Esta propriedade nos mostra que todo radical pode se transformado numa potencia de expoente fracionário, onde o índice da raiz é o denominador do expoente. Ex. 1: 2 1 1x Ex. 2: 3 7 7x Ex. 3: 25 2 25 5 1 Ex. 4: 3 8 8 x Obs.:Esta propriedade também é válida nos dois sentidos, ou seja ou n m n Ex.: a 5 2 5 a e), com b 0 b a b a n n n ¸ z ¹. Propriedades das Potências 1a ) Base 1: potências de base 1 são iguais a 1 Exemplos: 11 = 1 110 = 1 2a) Expoente 1: potências de expoente 1 são iguais à base. Exemplos: 71 = 7 51 = 5 x1 = x 3a) Potências de bases iguais Multiplicação: conservamos a base comum e somamos os expoentes. Exemplos: 37 x 35 = 312 58 x 5 x 29 x 27 = 59 x 216
PROPRIEDADES DE POTÊNCIA
Exemplo 6. Utilizaremos propriedades das potências para encontrar o valor da expressão C= 82 22 ·43 10. Primeiro notemos que todas as potências da expressão podem ser escritas como potências na base 2.Assim, C= (23)2 22 ·(22)3 10, aplicando agora a propriedade 5), temos que C= 26 22 ·26 10, e usando a propriedade 2) obtemos C=(2 6−2. 1. Multiplicação de potências de mesma base No produto de potências de mesma base devemos conservar a base e somar os expoentes. am . an = am + n Exemplo: 2 2 . 2 3 = 2 2+3 = 2 5 = 32 2. Divisão de potências de mesma base Na divisão de potências de mesma base conservamos a base e subtraímos os expoentes. am : an = am - n A potenciação ou exponenciação como muitos a chamam, é a operação matemática que representa a multiplicação de fatores iguais. Quando usamos a Potenciação? A potenciação é utilizada quando há a necessidade de multiplicar um número por ele mesmo várias vezes a fim de tornar este número mais simples de ser visualizado e compreendido. Propriedades da potenciação Foco no conteúdo. Complete o quadro abaixo, reduzindo o cálculo a uma só potência. Cálculo Resposta em uma só potência 245 34−2 1042 −24−2 234 Atividade 1 Na prática Responder no caderno. Cálculo Resposta em uma só potência 245 24∙5=220
Atividade de Propriedades Da Potenciação. PDF
aplicar as propriedades da potenciação de forma conveniente. Deste modo, podemos perceber que , e . Logo, a equação inicial passa a ser: , e, se aplicarmos as propriedades vistas na página anterior, teremos .. A resolução deste tipo de equação se inicia com o uso da propriedade operatória do produto de potências de mesma base, e. propriedades. Ampliando a definição: Dados o número real a e o número inteiro positivo n, definimos a operação potenciação de base a e expoente n como sendo o número real an ( a elevado a n), tal que: O número resultante dessa operação é denominado potência. Exemplos: a) 44 = 4 . 4 . 4 . 4 = 256 b) (-4)3 = (-4) . (-4. Propriedades das Operações com Potências Para multiplicar potências com a mesma base, mantém-se a base e adicionam-se os expoentes. m × an = am n Exemplo: 2 2 × 3 2 + 3 5 2 = 2 = 2 Para dividir potências com a mesma base, mantém-se a base e subtraem-se os expoentes. m : an = am − n , ≠ 0 Exemplo: 3 6 :3 4 = 3 6 − 4 = 3 2 PROPRIEDADES DE POTENCIAÇÃO 1. Produto de potências de bases iguais: Exemplo 2 5 2 8 2 5 8 2 13 . 2. Quociente de potências de bases iguais: Exemplo 4 3 3 7 3 7 4 3 3 . x a ay ax y . x y y ax . 3 3. Potência de potência: ( a x y ) a x y . Exemplo 4 7 2 2 7 2 14 .
706 Propriedade das Potências > aMath
Introdução às propriedades da potenciação (expoentes racionais) Reescreva a expressão na forma y n . Enroscou? Veja os artigos/vídeos relacionados ou use uma dica. Aprenda Matemática, Artes, Programação de Computadores, Economia, Física, Química, Biologia, Medicina, Finanças, História e muito mais, gratuitamente. A Khan Academy é. Propriedades da potenciação. A potenciação possui oito propriedades mais importantes, com as quais é possível resolver quase todos os problemas envolvendo essa operação: 1 - Expoente.
Propriedades da Potenciação. Toda potência com expoente igual a zero, o resultado será 1, por exemplo: 5 0 =1; Toda potência com expoente igual 1, o resultado será a própria base, por exemplo: 8 1 = 8; Quando a base for negativa e o expoente um número ímpar, o resultado será negativo, por exemplo: (- 3) 3 = (- 3) x (- 3) x (- 3) = - 27. Propriedades da potenciação. Considerando as bases a e b números reais, e os números naturais para m e n. Temos as seguintes propriedades: Qualquer número real elevado ao expoente natural 1 é igual ao próprio número. Exemplo: 5¹ = 5. Qualquer número real não-nulo elevado ao expoente natural 0 é igual a 1.
Potenciação Manual do Enem
As propriedades das potências são aplicadas no estudo de potenciação de números reais. Essas propriedades são técnicas desenvolvidas com o objetivo de facilitar as operações entre os números que possuem expoentes, sendo muito úteis nas áreas de estudos da Física, Química e Biologia, além de serem também aplicadas constantemente no trabalho com notações científicas. Assim, definimos a potenciação com expoente racional da seguinte forma: ⁄ =𝑞√ Vemos que para esta definição, estamos usando a radiciação, sendo a elevado ao racional p/q igual à raiz q-ésima de a elevado a p. Iremos definir a radiciação logo a seguir. Antes, vejamos um exemplo de potenciação com expoente racional: