Ces exercices sur les suites arithmétiques et suites géométriques permettent aux élèves de mettre le cours en ligne de maths en première en application. Exercice 1 On considère la suite (un) définie par : un = 5 2n. Calculer u0, u1 et u2. Démontrer que (un) est une suite arithmétique dont on précisera la raison. Que vaut u100 ? Calculer la somme S = u0 + u1 + : : : + u100. Exercice 2 On considère la suite (un) définie par : un = (n + 1)2 n2. Calculer u0, u1 et u2.
TOP40+ Exercices Suites Numériques 1Ère S dessin Bts cpi
Calculer r et u 2 et 0 u 5 3) On sait que u = 2 et u = 10 . Calculer r et u 0 2 1 , u 5 4) On sait que u = 10 et u = 28 . Calculer r et u , u 1 10 0 5 5) On sait que u = 17 et u = 12 . Calculer r et 5 10 u , u 0 1 Exercice 6 corrigé disponible Exercice 7 corrigé disponible Exercice 8 corrigé disponible Exercice 9 corrigé disponible Exercice 10 corrigé disponible Exercice 11 corrigé disponible Exercice 12 corrigé disponible 2/4 Suites arithmétiques et géométriques - Exercices - Devoirs Mathématiques Première générale - Année scolaire 2021/2022 1) Définition Exemple : Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. ì u = 3 Télécharger 4C - Exercices bilan sur les suites arithmétiques et géométriques - CORRIGE 4C - Exercices bilan sur les suites arit Document Adobe Acrobat 687.1 KB Télécharger Ex 5 - Exercices sur les algorithmes - 1ère Ex 5 - Exercices sur les algorithmes - 1 Document Adobe Acrobat 406.2 KB Télécharger
Exercices corrigés sur les suites arithmétiques et géométriques en première S
Remarque Pour démontrer qu'une suite \left (u_ {n}\right) (un) est arithmétique, on pourra calculer la différence u_ {n+1} - u_ {n} un+1 −un . Si on constate que la différence est une constante r r, on pourra affirmer que la suite est arithmétique de raison r r . Exemple Soit la suite \left (u_ {n}\right) (un) définie par u_ {n}=3n+5 un = 3n + 5 . 1 / 12 (u n) désignera une suite arithmétique de raison a et de terme initial u 0 Si u 0 = 2 et que a = 4 alors u 10 = ? 42 ? 24 ? 12 Exemple : Considérons la suite ( ) où l'on passe d'un terme au suivant en multipliant par 2. Si le premier terme est égal à 5, les termes suivants sont : =5, =10, =20, =40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par : =5 =2. Suites arithmétiques et géométriques. Notions en vidéos. Suite arithmétique : définitions. 4 min 39. 10. Suite géométrique : définitions. 4 min 57. 10. Montrer qu'une suite est arithmétique. 5 min 01. 15.. S'entraîner avec des exercices. Suite arithmétique (4 exercices) Exercice . 1.
Maths 1ère Pro les suites numériques Fantadys
Télécharger la fiche d'exercices liée à ce cours Suites arithmétiques Définition récursive Soit ( u n) une suite numérique. On dit que la suite ( u n) est arithmétique s'il existe un réel r tel que, pour tout n ∈ N, u n + 1 = u n + r. Le réel r est appelé la raison de la suite. Exemple : La suite ( u n) définie par Exercice 1 Exercice 2 Exercice 3 Exercice 4 Exercice 5 Exercice 6 Définition Une suite arithmétique est définie par 2 éléments, son premier terme u 0 et sa raison r. Elle vérifie la relation suivante : u_ {n+1} = u_n + r un+1 = un + r Découvrez tous nos articles sur les suites Propriétés Écriture générale
Exercice 1 Les suites suivantes sont-elles croissantes? décroissantes? u n = n 2 + 5 n + 4 n ∈ N v n = − 2 n + 3 n + 1 n ∈ N w n = 2 n + 5 n ∈ N t n = 2 n n n ∈ N ∗ Correction Exercice 1 Exercice 2 ( u n) est une suite arithmétique de premier terme u 0 = 5 et de raison 2. Exprimer u n en fonction de n. Calculer u 5 et u 10. SUITES ARITHMÉTIQUES ET GÉOMÉTRIQUES. EXERCICES Exercice 1 : Dire si les suites suivantes définies sur ( un ) définie par un 2 un 1. 3 ( vn ) définie par vn n2 1. , sont des suites arithmétiques. 3. w 9 et, pour tout n de , w w 0 n 1 n 1 4. z 4 et, pour tout n de , z 2 z 0 1 n
Exercices corrigés sur les suites arithmétiques et géométriques en première S
Exercices 1: Somme de suite arithmétique et Python 1) Calculer la somme 5 + 8 + 11 + 14 +. + 92 2) Écrire un programme en Python pour calculer cette somme et retrouver le résultat de la question 1). Exercices 2: Somme de suite arithmétique et algorithmique 1) Calculer la somme 20 + 23 + 26 +. + 59 Les suites arithmético-géométriques : Cours et exercices corrigés Tout savoir sur les suites arithmético-géométriques : Définition, Résolution, Exemples et Exercices. En lisant cet article, vous saurez tout sur ce sujet ! Partager : par Valentin Strach 13 juin 2021 3 minutes de lecture 2 commentaires